Решение заданий на дистанционное занятие ресурсного центра по учебному предмета «Математика»

8 класс.

1. Решение:

Пусть для первой группы выбраны числа x и y (x < y). Тогда xy = 1 + 2 + ... + 15 - x - y=120-x-y или (x+1)(y+1)=121. Следовательно, x+1=1 и y+1=121 или x+1=y+1=11,что невозможно.

Ответ: нельзя.

2. Решение:

Пусть все лампочки оказались включенными после n ходов. Тогда все было произведено 5n нажатий кнопки. При этом каждый из 12 выключателей должен быть нажат нечетное число раз. Общее число нажатий будет четным, т.е. n – четное.

Пусть n=2. Однако за 2 хода можно включить максимум 10 лампочек.

Пусть n=4. Покажем, что за 4 хода можно включить все лампочки.

Ход 1: нажимаем кнопки 1, 2, 3, 4, 5.

Ход 2: нажимаем кнопки 6, 7, 8, 9, 10.

Ход 3: нажимаем кнопки 7, 8, 9, 10, 11.

Ход 4: нажимаем кнопки 7, 8, 9, 10, 12.

Ответ: 4 хода.

Решение:

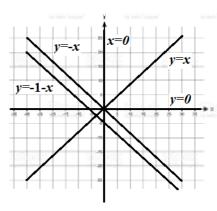
Выполним преобразования: $x^3y(x+y+1)=xy^3(x+y+1)$;

$$x^{3}y(x+y+1)-xy^{3}(x+y+1)=0;$$

$$xy(x^{2}-y^{2})(x+y+1)=0;$$

$$xy(x-y)(x+y)(x+y+1)=0.$$

Исходному уравнению будут удовлетворять точки, для которых выполняется одно условий: x = 0, y = 0, x - y = 0, x + y = 0, x + y + 1 = 0. Это будут точки,



2x

 \boldsymbol{x}

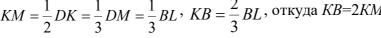
лежащие на одной из прямых: x = 0, y = 0, y = x, y = -x, y = -1 - x. Несложно построить эти прямые и посчитать, что они делят координатную плоскость на 12 частей.

Ответ: 12 частей.

Доказательство:

Отразим треугольник ABC относительно прямой AC. Пусть точка B перейдет в точку D. Получим треугольник ADC, равный треугольнику ABC. Треугольник DAB будет равнобедренным с боковыми сторонами AD и AB и медианой AC. Если AK=2KC, то точка K – является точкой пересечения медиан треугольника DAB. Проведем в треугольнике две другие медианы: *DM* и *BL*. Так как треугольник DAB равнобедренный, то DM=BL. Далее, имеем:

$$KM = \frac{1}{2}DK = \frac{1}{3}DM = \frac{1}{3}BL$$
, $KB = \frac{2}{3}BL$, откуда $KB = 2KM$.



Что и требовалось доказать.

Решение:

А) Покажем, что команда мальчиков школы №1 могла занять последнее десятое место. Пусть эта команда одну игру выиграла, а остальные свела вничью. Тогда она наберет 3+8=11 очков. Расположим остальные 9 команд по кругу. Пусть каждая команда побеждает следующие 4 команды, находящиеся за ней по ходу часовой стрелки, и проигрывает четырем командам, следующим за ней против хода часовой стрелки. Тогда каждая из оставшихся 9 команд, даже без учета игр с командой школы №1, 4 раза выиграет и 4 раза проиграет и наберет 12 очков.

Б) Покажем, что команда девочек школы №1 могла занять первое место, набрав при этом больше всех очков. Если команда школы №1 из 9 игр выиграет 4 игры и проиграет 5 игр, то она наберет 12 очков. Если все остальные игры турнира закончатся вничью, то 5 команд, обыгравших команду школы №1, наберут по 3+1.8=11 очков, 4 команды, проигравшие команде школы №1, наберут по 8 очков. Таким образом, команда школы №1 занимает первое место.

Ответ: а) 10 место; б) 1 место

Решение заданий на дистанционное занятие ресурсного центра по учебному предмета «Математика»

9 класс.

1. Доказательство:

Перебором остатков при делении на 7 устанавливаем, что числитель только тогда делится на 7, когда n=7k+5 при некотором целом k. В этом случае $\frac{n^2-3n+4}{49}=$

$$\frac{49ig(k^2+kig)+14}{49}=rac{7ig(k^2+kig)+2}{7}.$$
 Легко видеть, что последняя дробь не может быть

равной целому числу ни при каком k.

Что и требовалось доказать.

2. Решение:

Так как P(1)=29, то коэффициенты многочлена P(x) могут принимать целые значения только от 0 до 29. Пусть $P(x)=ax^2+bx+c$, $a\ge 1$; $b,c\ge 0$, a+b+c=29.

Имеем:
$$2021 = 625a + 25b + c$$
.

Поскольку $4 \cdot 25^2 > 2021$, то $a \le 3$.

Если a=1 или a=2, то $625a \le 1250$. Тогда $771 \le 25b+c$. Однако $25 \cdot 28 = 700$. Противоречие.

Значит a=3. Итак, $2021=625\cdot 3+25b+c$, 146=25b+c, где b+c=26.

Так как $25 \cdot 6 > 146$, то $b \le 5$. Если $b \le 4$, то $c \ge 46$. Противоречие.

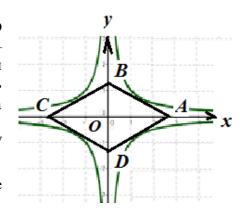
Значит
$$b$$
=5. $146 = 25 \cdot 5 + c$, c =21.

Итак,
$$P(x) = 3x^2 + 5x + 21$$
.

Omsem:
$$P(x) = 3x^2 + 5x + 21$$
.

3. Решение:

Пусть вершины A и C лежат на оси OX, а вершины B и D лежат на оси OY. Диагонали AC и BD пересекаются в точке O – начале координат. Чтобы найти площадь ромба ABCD, найдем площадь треугольника AOB и затем умножим ее на 4. Пусть уравнение прямой AB имеет вид: y = kx + b. Поскольку эта прямая касается графика функции $y = \frac{1}{x}$ (т.е. имеет с ним одну общую точку), то уравнение $kx + b = \frac{1}{x}$ имеет единственное решение (причем, очевидно, положительное).



Имеем:
$$kx^2 + bx - 1 = 0$$
 , D =0, $b^2 + 4k = 0$. Откуда $k = -\frac{b^2}{4}$.

Уравнение прямой AB примет вид $y = -\frac{b^2}{4}x + b$, где $b \neq 0$. Найдем координаты точек A и B.

Точка
$$A$$
: y =0. $0 = -\frac{b^2}{4}x + b$, откуда $x = \frac{4}{b}$, т.е. $A\left(\frac{4}{b};0\right)$.

Точка
$$B: x=0$$
. $y=-\frac{b^2}{4}\cdot 0+b$, откуда $y=b$, т. е. $B\left(0;b\right)$.

Тогда
$$AO = \frac{4}{b}$$
 , $BO = b$. $S_{\Delta AOB} = \frac{1}{2} AO \cdot BO = \frac{1}{2} \cdot \frac{4}{b} \cdot b = 2$.

Тогда площадь ромба $ABCD\ S = 4 \cdot S_{\triangle AOB} = 4 \cdot 2 = 8\$ (кв.ед).

Ответ: 8 кв.ед.

4. Доказательство:

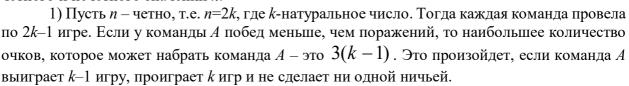
По свойству касательной и секущей имеем:

$$AK^2 = AM \cdot AC$$
, $CP^2 = CM \cdot CA$. Поскольку AM=CM, то $AM \cdot AC = CM \cdot CA$, откуда $AK^2 = CP^2$, $AK = CP$.

Что и требовалось доказать.

5. Решение:

Каждая из n команд провела по n–1 игре. Рассмотрим случаи четного и нечетного значений n.



Если у команды B побед больше, чем поражений, то наименьшее число очков, которое она могла набрать — это $3+1\cdot(2k-2)=2k+1$ (это будет в случае, если команда B выиграла одну игру, а остальные свела вничью).

Поскольку команда A набрала очков больше, чем команда B, то должно выполняться неравенство: 3(k-1)>2k+1, откуда k>4. Тогда наименьшее значение n равно $2\cdot 5=10$. Легко видеть, что случай n=10 возможен. Если команда A из 9 игр выиграет 4 игры и проиграет 5 игр, то она наберет 12 очков. Если команда B обыграет команду A, но остальные игры сведет вничью, то она наберет $3+1\cdot 8=11$ очков.

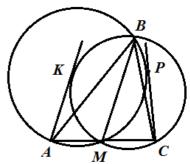
2) Пусть n — нечетно, т.е. n=2k+1, где k-натуральное число. Тогда каждая команда провела по 2k игр. Если у команды A побед меньше, чем поражений, то наибольшее количество очков, которое может набрать команда A — это 3(k-1)+1=3k-2. Это произойдет, если команда A выиграет k-1 игру, проиграет k игр и 1 игру сведет вничью.

Если у команды B побед больше, чем поражений, то наименьшее число очков, которое она могла набрать – это $3+1\cdot(2k-1)=2k+2$.

Поскольку команда A набрала очков больше, чем команда B, то должно выполняться неравенство: 3k-2>2k+2, откуда k>4. Тогда наименьшее значение n — это $2\cdot 5+1=11$.

Поскольку 11>10, то в качестве ответа берем значение n равное 10.

Ответ: 10 команд.



Решение заданий на дистанционное занятие ресурсного центра по учебному предмета «Математика»

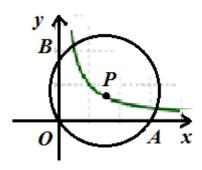
10 класс.

1. Решение:

Пусть точка $P\left(a; \frac{1}{a}\right)$ — центр окружности. Тогда уравнение

этой окружности будет иметь вид: $(x-a)^2 + \left(y - \frac{1}{a}\right)^2 = R^2$.

Так как точка $O\left(0;0\right)$ лежит на окружности, то $\left(0-a\right)^2+\left(0-\frac{1}{a}\right)^2=R^2$, откуда $a^2+\frac{1}{a^2}=R^2$.



Имеем:
$$(x-a)^2 + (y-\frac{1}{a})^2 = a^2 + \frac{1}{a^2}$$
, $x^2 - 2ax + a^2 + y^2 - \frac{2y}{a} + \frac{1}{a^2} = a^2 + \frac{1}{a^2}$, $x^2 - 2ax + y^2 - \frac{2y}{a} = 0$ (1).

Пусть данная окружность пересекает оси OX и OY в точках A и B соответственно. Найдем из (1) координаты точки A: y=0, $x^2 - 2ax = 0$. Т.к. x>0, то x=2a, т.е. A(2a; 0). Найдем координаты точки B: x=0, $y^2 - \frac{2y}{a} = 0$. Т.к. y>0, то $y = \frac{2}{a}$, т.е. B(0; $\frac{2}{a}$).

Итак
$$OA=2a$$
, $OB=\frac{2}{a}$. $S_{AOB}=\frac{1}{2}\cdot 2a\cdot \frac{2}{a}=2$ (кв.ед.)

Ответ: 2 кв. ед.

2. Решение:

Пусть $\frac{10a+b}{10b+c}$ — исходная дробь, где a, b, c — цифры. Тогда $\frac{10a+b}{10b+c} = \frac{a}{c}$, или

10ab-10ac=bc-ac, или $5\cdot 2a(b-c)=c$ (*b-a*). Так как c (*b-a*) делится на простое число 5, то c \vdots 5 или (b-a) \vdots 5.

Если c: 5, то c = 5 и 2a(b-5) = b - a. Из четырех вариантов для b (6, 7, 8, 9) условию задачи соответствуют два: $b_1 = 6$, $a_1 = 2$ и $b_2 = 9$, $a_2 = 1$.

Если (b-a) :5, то b=a+5 и 2a(b-c)=c. Из четырех вариантов для a (1, 2, 3, 4) условию задачи соответствуют два: $a_1=1$, $b_1=6$, $c_1=4$ и $a_2=4$, $b_2=9$, $c_2=8$.

Таким образом, Вася мог «сокращать» одну из четырех дробей: $\frac{26}{65}$, $\frac{19}{95}$, $\frac{16}{64}$, $\frac{49}{98}$.

Omeem:
$$\frac{26}{65}$$
, $\frac{19}{95}$, $\frac{16}{64}$, $\frac{49}{98}$.

3. Решение:

Так как P(1)=8, то коэффициенты многочлена P(x) могут принимать целые значения только от 0 до 8. Поскольку $2021<12^4$ и $2021>12^2\cdot 8$, многочлен P(x) имеет степень 3, т.е. $P(x)=ax^3+bx^2+cx+d$, $a\geq 1$, $b,c,d\geq 0$, a+b+c+d=8 .

Имеем:
$$2021 = a \cdot 12^3 + b \cdot 12^2 + c \cdot 12 + d$$
.

$$2021 < 2 \cdot 12^3$$
, T.e. $a=1$.

$$2021 = 1728 + b \cdot 12^2 + c \cdot 12 + d$$
, $293 = b \cdot 12^2 + c \cdot 12 + d$, где $b + c + d = 7$.

Отсюда следует, что $b \le 2$.

Пусть b=1, тогда $293 = 144 + c \cdot 12 + d$, $149 = c \cdot 12 + d$, где c + d = 6. Однако 149>12·6. Противоречие.

Пусть b=2, тогда $293=288+c\cdot 12+d$, $5=c\cdot 12+d$, где c+d=5 . Откуда c=0, d=5.

 \boldsymbol{L}

Итак,
$$P(x) = x^3 + 2x^2 + 5$$
.

Omsem: $P(x) = x^3 + 2x^2 + 5$.

4. Решение:

1 способ.

По свойству касательной и секущей имеем:

$$AK \cdot AB = AM^2$$
, $CL \cdot CB = CM^2$. Поскольку $AM = CM$, то

$$AK \cdot AB = CL \cdot CB$$
 , откуда $\frac{AK}{CL} = \frac{BC}{AB}$ (1).

Далее,

$$\frac{S(\Delta AKM)}{S(\Delta ABC)} = \frac{AK \cdot AM}{AB \cdot AC} = \frac{AK}{2AB} \cdot S(\Delta AKM) = \frac{AK}{2AB} S(\Delta ABC) (2).$$

$$\frac{S(\Delta CLM)}{S(\Delta ABC)} = \frac{CL \cdot CM}{CB \cdot AC} = \frac{CL}{2BC}.$$

$$S(\Delta CLM) = \frac{CL}{2BC}S(\Delta ABC) (3)$$

Из (2) и (3) с учетом (1) получаем:

$$\frac{S(\Delta AKM)}{S(\Delta CLM)} = \frac{AK}{AB} \cdot \frac{BC}{CL} = \frac{AK}{CL} \cdot \frac{BC}{AB} = \frac{BC}{AB} \cdot \frac{BC}{AB} = \frac{BC^2}{AB^2}.$$

Что и требовалось доказать

2 способ.

Как и в первом способе доказываем, что $\frac{AK}{CL} = \frac{BC}{AB}$

Далее,
$$S(\Delta AKM) = \frac{1}{2}AK \cdot AM \cdot \sin A$$
, $S(\Delta CLM) = \frac{1}{2}CL \cdot CM \cdot \sin C$.

$$\frac{S(\Delta AKM)}{S(\Delta CLM)} = \frac{\frac{1}{2}AK \cdot AM \cdot \sin A}{\frac{1}{2}CL \cdot CM \cdot \sin C} = \frac{AK \cdot \sin A}{CL \cdot \sin C} = \frac{BC \cdot \sin A}{AB \cdot \sin C}.$$

По теореме синусов для треугольника ABC имеем: $\frac{AB}{\sin C} = \frac{BC}{\sin A}, \frac{\sin A}{\sin C} = \frac{BC}{AB}$.

Тогда
$$\frac{S(\Delta AKM)}{S(\Delta CLM)} = \frac{BC \cdot \sin A}{AB \cdot \sin C} = \frac{BC \cdot BC}{AB \cdot AB} = \frac{BC^2}{AB^2}$$
.

Что и требовалось доказать.

5. Решение:

Команда A провела n-1 игру. Если у нее побед больше, чем поражений, то минимальное число очков, которое она могла набрать — это 3+(n-2)=n+1 (это будет в случае, если команда A выиграла одну игру, а остальные свела вничью). Каждая из n-1 оставшихся команд должна набрать не меньше, чем n+2 очка. Поэтому сумма очков, набранных остальными командами должна быть не меньше, чем $(n-1)(n+2)=n^2+n-2$. В играх между собой n-1 команд могут набрать не более, чем $\frac{3\cdot (n-1)\cdot (n-2)}{2}$ очков: они проведут между собой $\frac{(n-1)\cdot (n-2)}{2}$ игр, каждая из

которых принесет в общую копилку максимум 3 очка в случае победы одной из команд. Кроме того, оставшиеся n-1 команд наберут в сумме n-2 очка за счет ничьих с командой A.

Итак, сумма очков, набранная остальными командами не превышает $\frac{3\cdot (n-1)\cdot (n-2)}{2} + n-2 \ .$

Получаем неравенство:
$$\frac{3 \cdot (n-1) \cdot (n-2)}{2} + n - 2 \ge n^2 + n - 2$$
. Откуда $n \ge 9$.

Пусть n=9. Тогда команда A наберет не менее 3+7=10 очков. Каждая из остальных команд должна набрать не менее 11 очков. Сумма очков остальных команд не меньше, чем 88. В играх между собой остальные 8 команд наберут не более, чем $\frac{3 \cdot 8 \cdot 7}{2}$ = 84 очка. Плюс еще 7 очков в играх с командой A. Итого, остальные команды могут в сумме набрать максимум 84+7=91 очко, но при этом они должны набрать не менее 88 очков. Это означает, что им в играх между собой допускается играть вничью не более трех раз. Игры остальных команд между собой будем называть «турнир восьми». В «турнире восьми» будет сыграно $\frac{8 \cdot 7}{2}$ = 28 матчей. Рассмотрим возможные количества ничьих на «турнире восьми».

- 1) На «турнире восьми» не было ничьих. Тогда всего было одержано 28 побед. $28 = 3 \cdot 8 + 4$ это означает, что не менее четырех команд (8–4=4) одержали в «турнире восьми» ровно 3 победы. С учетом ничьей с командой A, каждая из этих команд в исходном турнире набрала не более 10 очков.
- 2) На «турнире восьми» была 1 ничья. Тогда всего было одержано 27 побед. $27 = 3 \cdot 8 + 3$ это означает, что не менее пяти команд (8–3=5) одержали в «турнире восьми» ровно 3 победы. Ничья прибавит по очку не более, чем двум из них. Тогда не менее, чем 5–2=3 команды с учетом ничьей с командой A, наберут в исходном турнире не более 10 очков.
- 3) На «турнире восьми» было 2 ничьи. Тогда всего было одержано 26 побед. $26 = 3 \cdot 8 + 2$ это означает, что не менее шести команд (8–2=6) одержали в «турнире восьми» ровно 3 победы. Две ничьи прибавят по очку не более, чем четырем из них. Тогда не менее, чем 6-4=2 команды с учетом ничьей с командой A, наберут в исходном турнире не более 10 очков.
- 4) На «турнире восьми» было 3 ничьи. Тогда всего было одержано 25 побед. $25 = 3 \cdot 8 + 1$ это означает, что не менее семи команд (8–1=7) одержали в «турнире восьми» ровно 3 победы. Три ничьи прибавят по очку не более, чем шести из них. Тогда найдется команда, которая с учетом ничьей с командой A, наберет в исходном турнире не более 10 очков.

Получается, что 9 команд на турнире быть не может.

Пусть n=10. Тогда команда A наберет не менее 3+8=11 очков. Покажем, что каждая из остальных команд может набрать более 11 очков. Расположим остальные 9 команд по кругу. Пусть каждая команда побеждает следующие 4 команды, находящиеся за ней по ходу часовой стрелки, и проигрывает четырем командам, следующим за ней против хода часовой стрелки. Тогда «турнире девяти» каждая команда 4 раза выиграет и 4 раза проиграет и наберет 12 очков. В исходном турнире, учитывая игры с командой A, восемь из оставшихся команд наберут по 13 очков, и одна (которая проиграла команде A) наберет 12 очков.

Ответ: 10 команд.

Решение заданий на дистанционное занятие ресурсного центра по учебному предмета «Математика»

11 класс.

1. Решение:

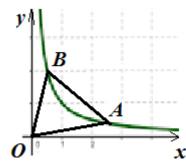
Пусть вершины треугольника AOB имеют следующие координаты: $A\left(a;\frac{1}{a}\right)$, B

 $\left(b; \frac{1}{h}\right), O(0; 0)$. Выразим квадраты длин сторон треугольника:

$$AO^{2} = (a-0)^{2} + \left(\frac{1}{a} - 0\right)^{2} = a^{2} + \frac{1}{a^{2}}$$

$$BO^{2} = (b-0)^{2} + \left(\frac{1}{b} - 0\right)^{2} = b^{2} + \frac{1}{b^{2}}$$

$$AB^{2} = (a-b)^{2} + \left(\frac{1}{a} - \frac{1}{b}\right)^{2}.$$



Так как AO=BO, то $a^2+\frac{1}{a^2}=b^2+\frac{1}{b^2}$, $a^2-b^2=\frac{1}{b^2}-\frac{1}{a^2}$, $a^2-b^2=\frac{a^2-b^2}{a^2b^2}$.

Поскольку $a^2 \neq b^2$ и a > 0, b > 0, то ab = 1, $b = \frac{1}{a}$.

Тогда
$$AB^2 = (a-b)^2 + \left(\frac{1}{a} - \frac{1}{b}\right)^2 = \left(a - \frac{1}{a}\right)^2 + \left(\frac{1}{a} - a\right)^2 = 2 \cdot \left(a - \frac{1}{a}\right)^2$$

Поскольку
$$AB=AO$$
, то $2 \cdot \left(a - \frac{1}{a}\right)^2 = a^2 + \frac{1}{a^2}$, $2a^2 + \frac{2}{a^2} - 4 = a^2 + \frac{1}{a^2}$,

Откуда
$$a^2 + \frac{1}{a^2} = 4$$
, т.е. $AO^2 = 4$.

Площадь треугольника ABC: $s = \frac{AO^2 \cdot \sqrt{3}}{4} = \frac{4 \cdot \sqrt{3}}{4} = \sqrt{3}$ (кв.ед).

Ответ: $\sqrt{3}$ ед. кв.

2. Доказательство:

Обозначим
$$S(n) = \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2(n+1)}$$
. Тогда $S(n+1) - S(n) = \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2(n+1)}$.

$$\frac{1}{2n+3} + \frac{1}{2n+4} - \frac{1}{n+2} = \frac{1}{2n+3} - \frac{1}{2n+4} > 0$$
, т. е. сумма растет с ростом n . Остается

убедиться, что
$$S(1) > \frac{5}{9}$$
. Действительно $S(1) = \frac{1}{3} + \frac{1}{4} = \frac{7}{12} = \frac{21}{36} > \frac{20}{36} = \frac{5}{9}$.

Что и требовалось доказать.

3. Решение:

Так как P(1) = 9, то коэффициенты многочлена P(x) могут принимать целые значения только от 0 до 9. Поскольку $2021 < 5^5$ и $2021 > 5^3 \cdot 9$, многочлен P(x) имеет степень 4, т.е. $P(x) = ax^4 + bx^3 + cx^2 + dx + e$, $a \ge 1$, $b, c, d, e \ge 0$, a + b + c + d + e = 9.

Имеем: 2021 = 625a + 125b + 25c + 5d + e . Т.к. $625 \cdot 4 = 2500$, то a должно принять значение 1, 2 или 3.

Пусть a=1.

2021 = 625 + 125b + 25c + 5d + e.

1396 = 125b + 25c + 5d + e,

b+c+d+e=8 . Однако $125\cdot 8 \le 1396$. Противоречие.

Пусть a=2.

2021 = 1250 + 125b + 25c + 5d + e. 771 = 125b + 25c + 5d + e, где b + c + d + e = 7.

Так как $125 \cdot 7 = 875 > 771$, то $b \le 6$.

Если $b \le 4$, то $25c + 5d + e \ge 771 - 500$, т.е. $25c + 5d + e \ge 271$, но $25 \cdot 7 = 175 < 271$.

Если b=5, то 25c+5d+e=771-625, т.е. 25c+5d+e=146, где c+d+e=2. Но $25\cdot 2=50<146$.

Если b=6, то 25c+5d+e=771-750, т.е. 25c+5d+e=21, где c+d+e=1. Легко видеть, что c=0. Тогда 5d+e=21, где d+e=1. Но $5\cdot 1=5<21$. Таким образом, при a=2 получаем противоречие.

Пусть a=3.

2021 = 1875 + 125b + 25c + 5d + e.

146 = 125b + 25c + 5d + e, где b + c + d + e = 6. Легко видеть, что $b \le 1$.

Пусть b=0.

Тогда 146 = 25c + 5d + e, где c + d + e = 6, причем $c \le 5$.

Если $c \leq 4$, то $5d + e \geq 146 - 100$, $5d + e \geq 46$. Однако, $5 \cdot 6 < 46$. Противоречие.

Если c=5, то $5d+e\geq 146-125$, 5d+e=21, где d+e=1. Это, очевидно, невозможно.

Пусть b=1. Тогда 146 = 125 + 25c + 5d + e.

21 = 25c + 5d + e, где c + d + e = 5.

Очевидно, c=0, 21 = 5d + e, откуда d=4, e=1.

Итак, $P(x) = 3x^4 + x^3 + 4x + 1$.

Omsem: $P(x) = 3x^4 + x^3 + 4x + 1$.

4. Доказательство:

1 способ.

По свойству секущих имеем:

 $AK \cdot AB = AM \cdot AC$, $CL \cdot CB = CM \cdot CA$. Поскольку AM = CM,

то
$$AK \cdot AB = CL \cdot CB$$
 , откуда $\frac{AK}{CL} = \frac{BC}{AB}$ (1).

Далее,
$$\frac{S(\Delta AKM)}{S(\Delta ABC)} = \frac{AK \cdot AM}{AB \cdot AC} = \frac{AK}{2AB}$$
.

$$S(\Delta AKM) = \frac{AK}{2AB} S(\Delta ABC)$$
 (2).

$$\frac{S(\Delta CLM)}{S(\Delta ABC)} = \frac{CL \cdot CM}{CB \cdot AC} = \frac{CL}{2BC}. \qquad S(\Delta CLM) = \frac{CL}{2BC}S(\Delta ABC) \quad (3).$$

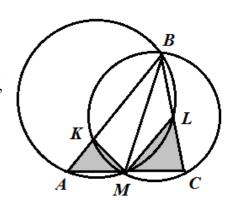
Из (2) и (3) с учетом (1) получаем:

$$\frac{S(\Delta AKM)}{S(\Delta CLM)} = \frac{AK}{AB} \cdot \frac{BC}{CL} = \frac{AK}{CL} \cdot \frac{BC}{AB} = \frac{BC}{AB} \cdot \frac{BC}{AB} = \frac{BC^2}{AB^2}$$

Что и требовалось доказать.

2 способ.

Как и в первом способе доказываем, что $\frac{AK}{CL} = \frac{BC}{AB}$



Далее, $S(\Delta AKM) = \frac{1}{2}AK \cdot AM \cdot \sin A$, $S(\Delta CLM) = \frac{1}{2}CL \cdot CM \cdot \sin C$.

$$\frac{S(\Delta AKM)}{S(\Delta CLM)} = \frac{\frac{1}{2}AK \cdot AM \cdot \sin A}{\frac{1}{2}CL \cdot CM \cdot \sin C} = \frac{AK \cdot \sin A}{CL \cdot \sin C} = \frac{BC \cdot \sin A}{AB \cdot \sin C}.$$

По теореме синусов для треугольника ABC имеем: $\frac{AB}{\sin C} = \frac{BC}{\sin A}$, $\frac{\sin A}{\sin C} = \frac{BC}{AB}$

Тогда
$$\frac{S(\Delta AKM)}{S(\Delta CLM)} = \frac{BC \cdot \sin A}{AB \cdot \sin C} = \frac{BC \cdot BC}{AB \cdot AB} = \frac{BC^2}{AB^2}$$
.

Что и требовалось доказать

5. Решение:

Рассмотрим случаи четного и нечетного значений n.

1) Пусть n — четно, т.е. n=2k, где k-натуральное число. Тогда каждая команда провела по 2k—1 игре. Если у команды A побед меньше, чем поражений, то наибольшее количество очков, которое может набрать команда A — это 3(k-1). Это произойдет, если команда A выиграет k—1 игру, проиграет k игр и не сделает ни одной ничьей.

Докажем, что среди остальных команд всегда найдется команда, которая наберет не меньше, чем $3+1\cdot(2k-2)=2k+1$ очка (столько очков, например, наберет команда, которая обыграла команду A и остальные игры свела вничью).

Предположим, что каждая из остальных команд набрала не более 2k очков. Тогда сумма очков остальных команд должна быть не более чем $2k\cdot(2k-1)=4k^2-2k$. Оценим минимально возможную сумму очков остальных команд. В играх с командой A они набрали 3k очков. Между собой остальные 2k–1 команды проведут $\frac{(2k-1)(2k-2)}{2}$ игры.

В каждой игре разыгрывается 2 (если ничья) или 3 (если победит одна из команд) очка. Поэтому минимально возможная сумма очков остальных команд равна:

$$3k + \frac{(2k-1)(2k-2)}{2} \cdot 2 = 3k + (2k-1)(2k-2) = 4k^2 - 3k + 2$$
. Найдем

разность между максимально и минимально возможными суммами очков остальных команд:

 $(4k^2-2k)-(4k^2-3k+2)=k-2$. Это число равно наибольшему количеству игр между остальными 2k-1 командами, которые могли закончиться победой одной из команд.

Если все игры между остальными 2k-1 командами закончатся вничью, то k команд, обыгравшие команду A наберут в итоге по $3+1\cdot(2k-2)=2k+1$ очка. Т.к. 2k+1>2k, то каждой из k команд в сумме ее очков необходимо хотя бы одну единичку заменить на нолик, т.е. вместо ничьей записать поражение, т.е. не менее, чем в k играх между остальными командами должна быть зафиксирована победа одной из команд. Однако, как уже установлено максимальное количество побед в играх между ними равно k-2. Противоречие. Итак, найдется команда, набравшая не меньше, чем 2k+1 очко. Поскольку команда A, занявшая 1 место, наберет не более 3(k-1) очка, то получаем неравенство: 3(k-1)>2k+1, откуда k>4. Тогда наименьшее значение n- это $2\cdot 5=10$. Легко видеть, что случай n=10 возможен. Если команда A из 9 игр выиграет 4 игры и проиграет 5 игр, то она наберет 12 очков. Если все остальные игры турнира закончатся вничью, то 5 команд, обыгравших A, наберут по $3+1\cdot 8=11$ очков, 4 команды, проигравшие A, наберут по 8 очков. Таким образом, команда A занимает первое место.

2) Пусть n — нечетно, т.е. n=2k+1, где k-натуральное число. Тогда каждая команда провела по 2k игр. Если у команды A побед меньше, чем поражений, то наибольшее

количество очков, которое может набрать команда A – это 3(k-1)+1=3k-2. Это произойдет, если команда A выиграет k-1 игру, проиграет k игр и 1 игру сведет вничью.

Докажем, что среди остальных команд всегда найдется команда, которая наберет не меньше, чем $3+1\cdot(2k-1)=2k+2$ очка (столько очков, например, наберет команда, которая обыграла команду A и остальные игры свела вничью).

Предположим, что каждая из остальных команд набрала не более 2k+1 очков. Тогда сумма очков остальных команд должна быть не более чем $(2k+1)\cdot 2k=4k^2+2k$. Оценим минимально возможную сумму очков остальных команд. В играх с командой A они набрали 3k+1 очков. Между собой остальные 2k команды проведут $\frac{2k(2k-1)}{2}$ игры. В каждой игре разыгрывается 2 (если ничья) или 3 (если победит одна из команд) очка. Поэтому минимально возможная сумма очков остальных команд равна: $3k+1+\frac{2k(2k-1)}{2}\cdot 2=3k+1+2k(2k-1)=4k^2+k+1$. Найдем разность между максимально и минимально возможными суммами очков остальных команд: $(4k^2+2k)-(4k^2+k+1)=k-1$. Это число равно наибольшему количеству игр между остальными 2k командами, которые могли закончиться победой одной из команд.

Если все игры между остальными 2k командами закончатся вничью, то k команд, обыгравшие команду A наберут в итоге по $3+1\cdot(2k-1)=2k+2$ очка. Т.к. 2k+2>2k+1, то каждой из k команд в сумме ее очков необходимо хотя бы одну единичку заменить на нолик, т.е. вместо ничьей записать поражение, т.е. не менее, чем в k играх между остальными командами должна быть зафиксирована победа одной из команд. Однако, как уже установлено максимальное количество побед в играх между ними равно k-1. Противоречие. Итак, найдется команда, набравшая не меньше, чем 2k+2 очков. Поскольку команда A, занявшая 1 место, наберет не более 3(k-1)+1=3k-2 очка, то получаем неравенство: 3k-2>2k+2, откуда k>4. Тогда наименьшее значение n-3то $2\cdot 5+1=11$.

Поскольку 11>10, то в качестве ответа берем значение n равное 10.

Ответ: 10 команд.