Решение к заданиям на дистанционное занятие ресурсного центра по учебному предмета «Математика»

8 класс

1. Решение

Так как равенство верно при всех x, то при $x=-\frac{4}{5}$ получим $0=\left|-\frac{12}{5}+a\right|+\left|-\frac{4}{5}b+3\right|$, откуда следует $\left|-\frac{12}{5}+a\right|=0$ и $\left|-\frac{4}{5}b+3\right|=0$. Из двух последних уравнений находим $a=\frac{12}{5}$ и $b=\frac{15}{4}$.

Omeem: $a = \frac{12}{5}, b = \frac{15}{4}$

2. Решение

Заметим, что $2018 = 3 + 5 \cdot 403$. Для победы Джону достаточно первым ходом положить в мешок 3 монеты, а затем каждый раз, когда Билли кладет в мешок n монет, Джон кладет в мешок n монет. Таким образом, каждый раз после очередного хода Джона количество монет в мешке увеличивается на n по сравнению с количеством монет, которое было в мешке после его предыдущего хода и n018-ю монету в мешок положит Джон.

Ответ: победит Джон Сильвер.

3. Решение

Заметим, что число $4!=1\cdot 2\cdot 3\cdot 4$ кратно 8. Поэтому при $m\geq 4$ левая часть уравнения $m!+8n=4^m-2$ кратна 8, а правая не кратна 4, а значит и 8. Поэтому достаточно рассмотреть все натуральные m от 1 до 3.

При m=1 имеем: $1!+8n=4^1-2$, 8n=1, n- не натуральное число.

При m=2 имеем: $2!+8n=4^2-2$, 8n=12, n- не натуральное число.

При m=3 имеем: $3!+8n=4^3-2$, 8n=56, n=7.

Omsem: m=3, n=7.

4. Решение

Докажем, что сумма диагоналей меньше периметра (3 балла).

Применив неравенство треугольника к треугольникам ABC, BCD, CDA и DAB, получим:

$$AC < AB + BC$$
, $BD < BC + CD$, $AC < CD + DA$, $BD < DA + AB$.

Сложим данные неравенства:

$$2AC + 2BD < 2AB + 2BC + 2CD + 2DA$$
, откуда

$$AC + BD < AB + BC + CD + DA$$
.

Докажем, что сумма диагоналей больше полупериметра (5 баллов)

Пусть О – точка пересечения диагоналей четырехугольника АВСД.

Применим неравенство треугольника к треугольникам AOB, BOC, COD, DOA:

AB < AO + OB , BC < BO + OC , CD < CO + OD , AD < DO + OA . Сложим полученные неравенства:

$$\frac{AB+BC+CD+DA<2AO+2BO+2CO+2DO}{\frac{AB+BC+CD+DA}{2}}<(AO+CO)+(BO+DO)$$

$$\frac{AB+BC+CD+DA}{2}< AC+BD$$

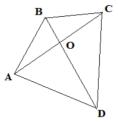
Что и требовалось доказать.

5. Решение

В каждой клетке проведем диагональ из левого нижнего в правый верхний угол. Каждая клетка разбивается на два равнобедренных прямоугольных треугольника с катетом 1 (за

единицу примем длину стороны клетки). Общее число таких треугольников будет четно. Фигурка вида 2 содержит ровно два треугольника. Фигурка вида 1 вне зависимости от ориентации содержит ровно один треугольник, и при этом «перечеркивает» два треугольника. Легко видеть, что после разрезания количество «перечеркнутых» треугольников будет четным, а значит и количество целых треугольников будет четным. Отсюда следует, что количество фигурок первого вида четно.

Что и требовалось доказать.



Решение к заданиям на дистанционное занятие ресурсного центра по учебному предмета «Математика»

10 класс

1. Решение

Заметим, что 2018 = 2 + 6.336.

- a) Для победы Бывалому достаточно первым ходом положить в мешок 2 монеты, а затем каждый раз, когда Трус и Балбес своими ходами в сумме положат в мешок n монет ($2 \le n \le 5$), Бывалый кладет в мешок 6-n монет. Таким образом, каждый раз после очередного хода Бывалого количество монет в мешке увеличивается на 6 по сравнению с количеством монет, которое было в мешке после его предыдущего хода и 2018-ю монету в мешок положит Бывалый.
- б) Если Бывалый ходит последним, то соперники могут помешать ему выиграть. Для этого первыми своими ходами им надо положить в мешок по 1 монете. Далее каждый раз, когда Бывалый кладет в мешок n монет ($1 \le n \le 4$), Трус и Балбес кладут в мешок в сумме 6-n монет. Тогда аналогично случаю a) 2018-ю монету в мешок положит кто-то из соперников Бывалого.

Ответ: а) да; б) нет.

2. Решение

Заметим, что при $m \ge 5$ число m! заканчивается на 0. Тогда $m \ge 5$ левая часть исходного уравнения заканчивается на 8. Однако легко убедиться, что квадрат натурального числа не может оканчиваться на 8. Поэтому достаточно рассмотреть все натуральные m от 1 до 4.

При m=1 имеем: $1!+20n+18=(2+n)^2$. Данное уравнение не имеет натуральных корней.

При m=2 имеем: $2!+20n+18=(4+n)^2$. Данное уравнение не имеет натуральных корней.

При m=3 имеем: $3!+20n+18=(6+n)^2$. Данное уравнение имеет корни 2 и 6.

При m=4 имеем: $4!+20n+18=\left(8+n\right)^2$. Данное уравнение не имеет действительных корней.

Omsem: (3; 2), (3; 6).

3. Решение

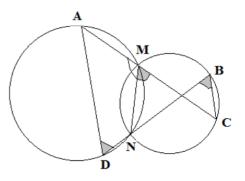
Докажем, что прямые AD и BC параллельны.

Пусть \angle CBN= α . Тогда \angle NMC= \angle CBN= α (углы, опирающиеся на одну дугу).

∠AMN=180°-∠NMC=180°-а (смежные углы).

Так как четырехугольник AMND вписанный, то $\angle ADN=180^{\circ}-\angle AMN=\alpha$.

Итак, ∠CBN=∠ADN=α. Но углы ∠CBN и ∠ADN – внутренние накрест лежащие, при прямых AD и BC и секущей BD. Поэтому прямые BC и AD параллельны. Это



означает, что четырехугольник ABCD – трапеция с основаниями AD и BC. Если точки A, B, C и D лежат на одной окружности, то трапеция равнобокая, а значит ее диагонали AC и BD равны.

Что и требовалось доказать.

4. Решение

Заметим, что a+b=(a+b+c)-c=8-c. Аналогично: b+c=8-a, c+a=8-b.

Тогда равенство (a+b)(b+c)(c+a)=138 можно записать в виде (8-c)(8-a)(8-b)=138. Далее, путем несложных тождественных преобразований получаем:

$$8^3 - 8^2(a+b+c) + 8(ab+bc+ca) - abc = 138$$
; $8^3 - 8^2 \cdot 8 + 8(ab+bc+ca) - 14 = 138$; $ab+bc+ca = 19$.

Далее,
$$a+b+c=8$$
, $(a+b+c)^2=64$; $a^2+b^2+c^2+2(ab+bc+ca)=64$; $a^2+b^2+c^2+2\cdot 19=64$; $a^2+b^2+c^2=26$. Тогда $(a^2+b^2+c^2)^2=26^2$.

$$a^4 + b^4 + c^4 + 2(a^2b^2 + b^2c^2 + c^2a^2) = 676.$$
 (1)

Осталось найти значение выражения $a^2b^2 + b^2c^2 + c^2a^2$.

```
ab+bc+ca=19; (ab+bc+ca)^2=361; a^2b^2+b^2c^2+c^2a^2+2(ab^2c+a^2bc+abc^2)=361; a^2b^2+b^2c^2+c^2a^2+2abc(a+b+c)=361; a^2b^2+b^2c^2+c^2a^2+2\cdot 14\cdot 8=361 a^2b^2+b^2c^2+c^2a^2=137. Тогда из (1) получаем a^4+b^4+c^4=676-2\cdot 137=402. Ответ: 402.
```

а) В каждой клетке проведем диагональ из левого нижнего в правый верхний угол. Каждая клетка разбивается на два равнобедренных прямоугольных треугольника с катетом 1 (за единицу примем длину стороны клетки). Общее число таких треугольников будет четно. Фигурка вида 2 содержит ровно два таких треугольника. Фигурка вида 3 в зависимости от ориентации содержит либо два либо ни одного треугольника — в любом случае, четное количество, и при этом «перечеркивает» либо ни одного, либо четыре треугольника. Фигурка вида 1 вне зависимости от ориентации содержит ровно один треугольник, и при этом перечеркивает два треугольника. Легко видеть, что после разрезания количество

«перечеркнутых» треугольников будет четным, а значит и количество целых треугольников

будет четным. Отсюда следует, что количество фигурок первого вида четно. *Что и требовалось доказать*.

5. Решение

б) Раскрасим доску в черно-белые цвета в шахматном порядке. Фигурки вида 2 покрывают целое количество черных клеток. Каждая фигура первого и третьего вида покрывает ½ черной клетки. Мы уже доказали, что количество фигурок первого вида четно. Значит, фигурки вида 1 покроют целое число черных клеток. Тогда и фигурки вида 3 покроют целое число черных клеток, а значит, их количество четно. Что и требовалось доказать.

Решение к заданиям дистанционное занятие ресурсного центра по учебному предмета «Математика»

11 класс

1. Решение

Заметим, что 2018 = 2 + 6.336.

- a) Для победы Бывалому достаточно первым ходом положить в мешок 2 монеты, а затем каждый раз, когда Трус и Балбес своими ходами в сумме положат в мешок n монет ($2 \le n \le 5$), Бывалый кладет в мешок 6-n монет. Таким образом, каждый раз после очередного хода Бывалого количество монет в мешке увеличивается на 6 по сравнению с количеством монет, которое было в мешке после его предыдущего хода и 2018-ю монету в мешок положит Бывалый.
- δ) Если Бывалый ходит последним, то соперники могут помешать ему выиграть. Для этого первыми своими ходами им надо положить в мешок по 1 монете. Далее каждый раз, когда Бывалый кладет в мешок n монет ($1 \le n \le 4$), Трус и Балбес кладут в мешок в сумме 6-n монет. Тогда аналогично случаю a) 2018-ю монету в мешок положит кто-то из соперников Бывалого.

Ответ: а) да; б) нет.

2. Решение

Если m=n, то уравнение примет вид $2n!=2^{2n-1}-2$. Откуда $n!=2^{2n-2}-1$. При всех натуральных n>1 правая часть последнего равенства будет нечетной, а левая — четной. При n=1 имеем $1!=2^{2-2}-1$, что неверно.

Пусть m < n. Тогда исходное уравнение можно переписать в виде:

$$m!(1+(m+1)\cdot...\cdot n)=2\cdot(2^{n+m-2}-1).$$

При $m \ge 4$ число m! кратно 4, однако правая часть последнего равенства не кратна 4. Поэтому достаточно рассмотреть все натуральные m от 1 до 3.

При m=1 имеем: $1!+n!=2^n-2$. $n!=2^n-3$. Поскольку n>m=1, то правая часть последнего равенства будет нечетной, а левая — четной. Противоречие.

При
$$m=2$$
 имеем: $2!+n!=2^{n+1}-2$. $n!=2^{n+1}-4$.

 $n!=2^2(2^{n-1}-1)$. При всех натуральных n>3 левая часть последнего равенства будет кратна 8. Однако правая часть не кратна 8. Так как n>m=2, то нужно рассмотреть только случай n=3:

$$3! = 2^2(2^2 - 1)$$
, что неверно. $3! = 2^2(2^2 - 1)$, что неверно.

При m=3 исходное уравнение примет вид: $3!+n!=2^{n+2}-2$, откуда $n!=2^{n+2}-8$.

Далее, $n! = 2^3 (2^{n-1} - 1)$. При всех натуральных n > 5 левая часть последнего равенства будет кратна 16. Однако правая часть не кратна 16. Так как n > m = 3, то нужно рассмотреть только случай n = 4 и n = 5.

При n=4 имеем: $4!=2^3(2^3-1)$, что неверно.

При n=5 имеем: $5!=2^3(2^4-1)$ - это равенство верно.

Итак, пара чисел (3; 5) – одно из решений исходного уравнения.

Рассмотрев случай m > n, аналогично получим вторую пару решений: (5; 3).

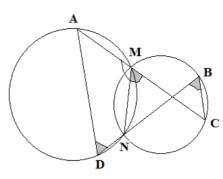
Omeem: (3; 5), (5; 3).

3. Решение

Докажем, что прямые AD и BC параллельны. Пусть \angle CBN= α . Тогда \angle NMC= \angle CBN= α (углы, опирающиеся на одну дугу).

∠AMN=180°-∠NMC=180°-α (смежные углы). Так как четырехугольник AMND вписанный, то ∠ADN=180°-∠AMN=α.

Итак, ∠CBN=∠ADN=α. Но углы ∠CBN и ∠ADN – внутренние накрест лежащие, при прямых AD и BC и секущей BD. Поэтому прямые BC и AD параллельны. Это



означает, что четырехугольник ABCD – трапеция с основаниями AD и BC.

Если точки A, B, C и D лежат на одной окружности, то трапеция равнобокая, а значит ее диагонали AC и BD равны. И наоборот, если диагонали трапеции равны, то она равнобокая и около нее можно описать окружность.

Что и требовалось доказать.

4. Решение

<u> 1 способ.</u>

Заметим, что a+b=(a+b+c)-c=8-c . Аналогично: b+c=8-a , c+a=8-b .

Тогда равенство (a+b)(b+c)(c+a)=138 можно записать в виде (8-c)(8-a)(8-b)=138.

Далее, путем несложных тождественных преобразований получаем:

$$8^3 - 8^2(a+b+c) + 8(ab+bc+ca) - abc = 138$$
; $8^3 - 8^2 \cdot 8 + 8(ab+bc+ca) - 14 = 138$; $ab+bc+ca = 19$.

Далее,
$$a+b+c=8$$
, $(a+b+c)^3=8^3$; $(a+b+c)\cdot(a+b+c)^2=512$
 $(a+b+c)\cdot(a^2+b^2+c^2+2(ab+bc+ca))=512$;
 $(a+b+c)\cdot(a^2+b^2+c^2+2\cdot19)=512$;
 $a^3+b^3+c^3+ab^2+a^2b+bc^2+b^2c+ca^2+c^2a+38\cdot(a+b+c)=512$;
 $a^3+b^3+c^3+ab(a+b)+bc(b+c)+ca(c+a)+38\cdot8=512$;
 $a^3+b^3+c^3+ab(8-c)+bc(8-a)+ca(8-b)=208$;
 $a^3+b^3+c^3+8(ab+bc+ca)-3abc=208$;
 $a^3+b^3+c^3+8\cdot19-3\cdot14=208$;
 $a^3+b^3+c^3=98$.

Ответ: 98.

2 способ.

Аналогично способу 1 находим ab+bc+ca=19.

Далее,
$$a+b+c=8$$
, $(a+b+c)^2=64$; $a^2+b^2+c^2+2(ab+bc+ca)=64$; $a^2+b^2+c^2+2\cdot 19=64$; $a^2+b^2+c^2=26$.

Далее можно использовать известную формулу:

$$a^{3} + b^{3} + c^{3} - 3abc = (a + b + c)(a^{2} + b^{2} + c^{2} + ab - bc - ac);$$

$$a^{3} + b^{3} + c^{3} - 3 \cdot 14 = 8(26 - 19);$$

 $a^3 + b^3 + c^3 = 98$. **Omeem:** 98.

5. Решение

а) В каждой клетке проведем диагональ из левого нижнего в правый верхний угол. Каждая клетка разбивается на два равнобедренных прямоугольных треугольника с катетом 1 (за единицу примем длину стороны клетки). Общее число таких треугольников будет четно. Фигурка вида 2 содержит ровно два таких треугольника. Фигурка вида 3 в зависимости от ориентации содержит либо два либо ни одного треугольника — в любом случае, четное количество, и при этом «перечеркивает» либо ни одного, либо четыре треугольника. Фигурка вида 1 вне зависимости от ориентации содержит ровно один треугольник, и при этом перечеркивает два треугольника. Легко видеть, что после разрезания количество «перечеркнутых» треугольников будет четным, а значит и количество целых треугольников будет четным. Отсюда следует, что количество фигурок первого вида четно.

Что и требовалось доказать.

б) Раскрасим доску в черно-белые цвета в шахматном порядке. Фигурки вида 2 покрывают целое количество черных клеток. Каждая фигура первого и третьего вида покрывает $\frac{1}{2}$ черной клетки. Мы уже доказали, что количество фигурок первого вида четно. Значит, фигурки вида 1 покроют целое число черных клеток. Тогда и фигурки вида 3 покроют целое число черных клеток, а значит, их количество четно.

Что и требовалось доказать.

Решение к заданиям на дистанционное занятие ресурсного центра по учебному предмета «Математика»

9 класс

1. Решение

Заметим, что 2+5=3+4=6+1=7. Также заметим, что $2018=2+7\cdot288$. Для победы Джону достаточно первым ходом положить в мешок 2 монеты, а затем каждый раз, когда Билли кладет в мешок n монет, Джон кладет в мешок n монет. Таким образом, каждый раз после очередного хода Джона количество монет в мешке увеличивается на n по сравнению с количеством монет, которое было в мешке после его предыдущего хода и n018-ю монету в мешок положит Джон.

Ответ: победит Джон Сильвер.

2. Решение

Заметим, что число $4!=1\cdot 2\cdot 3\cdot 4$ кратно 4. Поэтому при $m\geq 4$ левая часть уравнения $m!+4n+3=(n-m)^2$ при делении на 4 дает остаток 3. Однако квадрат целого числа, как известно, при делении на 4 может давать остатки 1 либо 0. Поэтому достаточно рассмотреть все натуральные m от 1 до 3.

При m=1 имеем: $1!+4n+3=(n-1)^2$. Данное уравнение не имеет натуральных корней.

При m=2 имеем: $2!+4n+3=(n-2)^2$. Данное уравнение не имеет натуральных корней.

При m=3 имеем: $3!+4n+3=(n-3)^2$. Данное уравнение имеет натуральный корень 10.

Omsem: m=3, n=10.

3. Решение

Пусть \angle CBN= α . Тогда \angle NMC= \angle CBN= α (углы, опирающиеся на одну дугу).

∠AMN=180°-∠NMС=180°-а (смежные углы).

Так как четырехугольник AMND вписанный, $to\angle ADN=180^{\circ}-\angle AMN=\alpha$.

Итак, \angle CBN= \angle ADN= α . Но углы \angle CBN и \angle ADN – внутренние накрест лежащие, при прямых AD и BC и секущей BD. Поэтому прямые BC и AD параллельны.

Что и требовалось доказать.

4. Решение

В каждой клетке проведем диагональ из левого нижнего в правый верхний угол. Каждая клетка разбивается на два равнобедренных прямоугольных треугольника с катетом 1 (за единицу примем длину стороны клетки). Общее число таких треугольников будет четно. Фигурка вида 2 содержит ровно два таких треугольника. Фигурка вида 3 в зависимости от ориентации содержит либо два либо ни одного треугольника — в любом случае, четное количество, и при этом «перечеркивает» либо ни одного, либо четыре треугольника. Фигурка вида 1 вне зависимости от ориентации содержит ровно один треугольник, и при этом перечеркивает два треугольника. Легко видеть, что после разрезания количество «перечеркнутых» треугольников будет четным, а значит и количество целых треугольников будет четным. Отсюда следует, что количество фигурок первого вида четно. Что и требовалось доказать.

